
MSMQ in the DII COE Part I Page 1

Microsoft Message Queue (MSMQ) in the Defense Information
Infrastructure Common Operating Environment (DII COE)

Part I: Introduction and Architecture

Prepared by Program Manager, Global Combat Support System – Army (GCSS-Army)

Abstract: This paper is the first of four papers that describes Microsoft Message Queue (MSMQ) and its
use in the DII COE. MSMQ is a middleware technology that permits developers to add a communication
infrastructure for distributed applications and solve problems caused by network communications
unavailability and disparate systems. This paper defines MSMQ and explores its architecture. It will
then show how MSMQ fits into the DII COE Architecture. Knowledge of the DII COE, the Component
Object Model (COM) and Distributed COM (DCOM) is assumed.

The term “message queue”, in a sense, is an
unfortunate term. The first thing that most people
think of when they here the term for the first time
is a new type of IN box for their messages or a
new protocol for messaging. The term is rarely
understood in its correct definition or context by
persons not familiar with message queuing. This
paper will describe Microsoft Message Queue
(MSMQ), its architecture and how its architecture
fits into the DII COE architecture.

What is Microsoft Message Queue?
According to Microsoft, “MSMQ is a development
tool that includes a store and forward protocol
model to be used for developing messaging
applications.”.1 Unlike many other Microsoft
applications, MSMQ is not an install and run
application. MSMQ is part of Microsoft’s
Distributed interNet Application (DNA)
methodology and is designed to be used as part of
a developed distributed application. Specifically,
MSMQ is designed to help developers add a
communications infrastructure to distributed
applications. MSMQ also helps solve two
problems:

§ Unavailability of communications with servers
or clients, and

1 INFO: MSMQ Is Not an E-mail Product Competing w/
Exchange Server, Microsoft Developer Network (MSDN)
Library, April 1999

§ Communications between disparate systems
and components.

The “messages” in message queuing are application
dependent data, vice messages in the sense of e-
mail systems. Message queuing maintains a
similarity to e-mail systems in that it can store data
in a server location and forward that data once the
appropriate client is available. In this way, message
queues solve the problem of communication
unavailability between servers and clients in
distributed applications.

MSMQ is part of Microsoft’s Distributed interNet
Application (DNA) methodology, which use
Component Object Model (COM) and Distributed
COM (DCOM) for communications. If
communication is required with a platform that
does not use COM or DCOM, the data in the
message can be formatted in a manner that the
Microsoft and other platform can understand. By
doing so, developers can solve the problem of
communications between disparate systems.

MSMQ server components can be installed as part
of Windows NT 4.0 Server, Windows NT 4.0
Server, Enterprise Edition, Windows 2000 Server,
Windows 2000 Advanced Server and Windows
2000 Datacenter Server. In Windows NT 4.0,
MSMQ is supplied either as part of the NT Option
Pack and/or as a component of Windows NT 4.0
Server, Enterprise Edition. Only Windows NT 4.0
Server, Enterprise Edition delivers the full product.
The NT Option Pack version, which installs on

MSMQ in the DII COE Part I Page 2

Windows 4.0 Server, does not include routing
servers. In Windows 2000, all Server products
contain the full product.

MSMQ client components can be installed on
Windows NT 4.0 Workstation, Windows 95,
Windows 98 or Windows 2000 Professional. The
clients are not supported on Windows 3.1 or
Windows for Workgroups 3.11.

Message Queue Services
MSMQ provides several services to an application,
including connectionless messaging, guaranteed
once only delivery, prioritization and routing,
message and system security, and disparate system
integration.2

§ Connectionless messaging is the store and
forward capability of MSMQ.

§ Guaranteed once only delivery is accomplished
by marking a message as either delivered or
undelivered. The system will keep attempting
to deliver the message until a predefined error
state occurs.

2 Homer, Alex and Sussman, David Professional MTS
and MSMQ with VB and ASP Wrox Press Ltd, 1998

§ Prioritization and routing services are provided
by a rule based system. It is possible to
program business rules for MSMQ that will
give priority to certain types of messages to be
delivered by their urgency. MSMQ also
provides a “cost” for each segment of a route
to aid in routing a message.

§ Message and system security is provided by the
security features of the Windows NT operating
system as well as using Security Service
Provider (SSP) mechanisms on each message.
Such mechanisms include certificate based
authentication and encryption.

§ Disparate system integration is provided by
tools in the MSMQ Software Development Kit
(SDK).

Logical Architecture
The logical architecture of MSMQ includes three
basic components: Controllers and servers, clients
and messages. Figure 1 is an example of this
logical architecture. Controllers and servers store
messages, determine transmission paths, control
delivery, provide security, administer the system
and provides an interface with an application.
Clients accept and acknowledge messages, provide
security and provide an interface with an

Figure 1

MSMQ in the DII COE Part I Page 3

application. Messages package data for
transmission. The figure on this page illustrates
this architecture.

There are several types of controllers and servers
used by MSMQ. Each type can only be installed
on a Windows NT 4.0 Server or Windows 2000
Server machine.
§ One Primary Enterprise Controller (PEC) is

required for each MSMQ network. It is the
highest in the hierarchy of MSMQ servers,
synchronizes all other servers, and holds the
master copy of the Message Queue
Information Queue (MSIQ). MSIQ is
described in a later section.

§ A Primary Site Controller (PSC) is required for
each site with an MSMQ network. These
controllers hold read only copies of the parts
of the enterprise information store that relates
to their own site. A site can also have a
Backup Site Controller (BSC). A PEC acts as a
PSC for the site that it’s on.

§ Routing Servers (RS) are used to route
messages between queues. They do not
contain any part of the enterprise information
store. PSC and BSC can also perform RS
services.

MSMQ clients can be installed on a Windows NT
4.0 Workstation,
Windows 2000
Professional, or
Windows 9x
machine. They
require a PEC to be
available during
installation.
§ A Dependent

Client uses
DCOM to
communicate
with its site
controller and
requires the site
controller to be
available at all
times. They have
no facilities to
store messages or
create queues.

§ An Independent
Client can create

queues and store messages. Independent
clients communicate via IP, IPX or RAS.
They can also move from one site another.

MSMQ Messages are created by implementing an
instance of a MSMQMessage object and setting
its properties. Once complete, it is sent to a queue,
where it is stored and subsequently transmitted. In
the case of a dependent client, the message is
transmitted immediately, since no queues are
available.

Messages are stored in express or recoverable
queues. An express queue is implemented in main
memory. They pro- vide high performance, but
are very volatile. Recoverable queues are
implemented on disk. They are slower than
express queues, but provide fault tolerance in case
of a failure.

Message Queues
Queues can be specified as public or private.
Public queues are registered with the PEC and can
be located by any MSMQ application. They are
persistent and their registration information can be
replicated in the enterprise, making them good for
long-term use. Private queues are registered on the
local computer and typically cannot be located by
other applications.

A message queue
must be created
before messages can
be sent. The
application can
search for and
access any public
queue. Queues can
be assigned
permissions, similar
to files and
directories, to
enhance security.
The physical
location of a queue
can also be specified
and can reside on
any server or client
except dependent
clients.

Figure 2

Queue
Manager SQL Server

Message
Queue

Information
Store

MSMQ
APIAPPLICATION

Primary
Enterprise
Controller

Queue
Manager

MSMQ
APIAPPLICATION

Independent
Client

MSMQ in the DII COE Part I Page 4

Functional Architecture
The functional architecture of MSMQ is illustrated
in Figure 2 using a PEC and an independent client.
The center of the architecture is the data store
known as the Message Queue Information Store
(MQIS).

The MQIS is a database that stores information
about the queues and clients in an MSMQ
enterprise, such as queue and their locations, site
controller locations, computers, etc. The MQIS is
kept on the PEC and is replicated as read only to
any site controller in the enterprise. The MQIS
runs on SQL Server 6.5 in the Windows NT 4.0
Option Pack version. In the Windows NT 4.0
Server, Enterprise Edition, Windows 2000 Server
and Windows 2000 Advanced Server versions, the
MQIS will not require SQL Server.

A queue manager governs each queue. The queue
manager provides all services for the queue,
including commun- ications, security, routing, error
control and message control. The queue manager
works with the MSMQ API to pass data to
applications.

The MSMQ API comes in two flavors, depending
on the programming language being used. It is
available as a set of C++ function calls or as a set of
COM or DCOM objects. It’s possible to build,
send, and receive messages with either one, but the
C++ API offers access to a few more services than
the COM API. The programming interface for
MSMQ will be described in another paper.

The MSMQ API creates a message for
transmission, decomposes messages for an
application and imposes business rules for MSMQ.

DII COE Architecture3

To use a hardware analogy, the COE is a collection
of building blocks that form a software “back
plane.” Segments “plug” into the COE just as
circuit cards plug into a hardware back plane. The

3 This discussion is taken verbatim from : Defense
Information Systems Agency (DISA) Joint
Interoperability and Engineering Organization (JIEO)
Defense Information Infrastructure (DII) Common
Operating Environment (COE) Integration and
Runtime Specification (I&RTS) DRAFT Version 4.0,
DISA JIEO, April 1999

blocks containing the operating system and
windowing environment are akin to a power supply
because they contain the software which “powers”
the rest of the system. The segments labeled as
COE component segments are equivalent to
already-built boards such as Central Processing
Unit (CPU) or memory cards. Some of them are
required (e.g., CPU) while others are optional (e.g.,
a specialized communications interface card)
depending upon how the system being built will be
used. The blocks in the DII COE Architecture
diagram labeled as mission application areas are
composed of one or more mission-application
segments. These segments are equivalent to adding
custom circuit cards to the back plane to make the
system suitable for one purpose or another.

This hardware analogy can be extended to the
Shared Data Environment (SHADE) portion of
the COE, but with some significant distinctions.
Within this conceptual model, the Database
Management System (DBMS) functions as the
COE’s disk controller and disk drives. The
applications’ databases can be equated to
directories or partitions on the drives accessed
through the DBMS “disk controller.” Data objects
belonging to each database then can be considered
as files within those “directories.”

The COE kernel is the minimal set of software
required on every platform regardless of how the
platform will be used. The COE kernel
components are shown in the DII COE
Architecture diagram on the next page and include
the Operating System and Windowing Services and
a collection of other services that properly belong
in the Infrastructure Services Layer. The kernel is
intentionally designed to be as small as possible, to
be as much COTS as possible, to provide a
common starting point for loading segments to
build up the system, and to provide an extensible
but common runtime environment for segment
execution.

Infrastructure Services are largely independent of
any particular application. Within the Infrastructure
Services layer, Management Services include
network, system, and security administration.
Communications Services provide facilities for
receiving data external to the system and for
sending data out of the system. Distributed
Computing Services provide the infrastructure

MSMQ in the DII COE Part I Page 5

necessary to achieve true distributed processing in
a client/server environment. Presentation Services
are responsible for direct interaction with the
human whether that be through windows, icons,
menus, or multimedia. Data Management Services
include relational database management as well as
file management in a distributed environment.
Workflow and Global Data Management Services
are oriented towards managing logistics data (e.g.,
parts inventory, work in process). Note that Data
Management Services and Global Data
Management Services are part of SHADE.

Unlike Infrastructure Services, Common Support
Applications tend to be much more specific to a
particular mission domain. The Alerts Service is
responsible for routing, prioritizing, and managing
alert messages throughout the system. The
Correlation Service is responsible for maintaining a
consistent view of the battle space by correlating
information from sensors or other sources that
indicate the disposition of platforms of interest.
MCG&I Services handle display of National
Imagery and Mapping Agency (NIMA) maps or

other products, and imagery received from various
sources. Message Processing Services handle
parsing and distribution of military-format
messages. Office Automation Services handle word
processing, spreadsheet, briefing support,
electronic mail, World-Wide-Web browsers, and
other related functions. (Browsers are in the
Common Support Applications layer, but Web
Servers fall within the Infrastructure Services layer.)
Logistics Analysis contains common functions,
such as Pert charts, for analyzing and displaying
logistics-related information. Online Help Services
provide applications with a uniform technique for
displaying context-sensitive help. Finally, Data
Access Services are part of SHADE and provide
applications with common data access methods,
procedures, and tools.

The Shared Data Environment (SHADE) is
both a strategy for data sharing and the
mechanisms to achieve it. SHADE is an integral
part of the DII COE, but it must also bridge the
gap between COE-based systems and legacy non-
COE systems because it must provide mechanisms

Figure 3

COMMON SUPPORT APPLICATIONS

INFRASTRUCTURE SERVICES

Hardware

System Services

NT Core
Components

Communications

Presentation

JOINT/CINC
Applications

Business
Applications

Intelligence
Applications

Functional
Applications

Service C2
Applications

Mission
Applications

System/Network
 Management&

Monitoring

Combat Support
DB’s Other

Files Intel
DB

Tactical Specific
DB’s

Message Processing

POSIX
Subsystem

Win16
NT VDM MS-DOS

Security
Subsystem

OS/2
Subsystem

Win32 Subsystem

Misc. Environment
 Functions

Console

Executive Services

Microkernel
Hardware Abstraction Layer (HAL)

Virtual
Memory
Manager

Local
Procedure
Call
Facility

Security
Reference
Monitor

Process
Manager Object

Manager

Hardware
Device Drivers

Network Drivers

File System
Drivers

Cache Manager
I/O Manger

Graphics
Device
Drivers

Window
Manager

Graphics
Device Interface
(WIN32K SYS)

Kernel Mode
User Mode

Operating System

S
t
a
n
d
a
r
d
A
p
p
l
i
c
a
t
i
o
n
P
r
o
g
r
a
m
I
n
t
e
r
f
a
c
e
s

S
H
A
D
E

COE
Office

Automation Data Access

Data & Object
Management

Database
Tool Kit

Developers Kit
Correlation

Distributed Computing

MCG&I

Administration Security Services

Strategic Specific
C2 DB’s

Account & Profile Mgr
Segment Installer

MSMQ in the DII COE Part I Page 6

for accessing large databases that are still on legacy
mainframes. SHADE provides COE-component
segments in both the Infrastructure Services and
Common Support Applications layers to
accomplish this task. SHADE includes the required
data-access architectures, data sharing
methodology, reusable software and data
components, and guidelines and standards for the
development and migration of systems that meet
the user’s requirements for timely, accurate, and
reliable data.

Windows NT COE Architecture
UNIX and NT architectures are similar in many
ways, but there are also many fundamental
differences. A goal of the COE is to capitalize on
the similarity and to negate or minimize the impact
of the differences.

Figure 3 is a simplified diagram that illustrates the
relationships between the Windows NT version 4
internal components and the COE layers. The
labeled boxes in the Infrastructure Services and
Common Support Applications layers are not
intended to be all encompassing nor are they
intended to conflict with the COE architecture
described above. The boxes are representative of
the services and COE-component segments in the
COE and are designed to illustrate the COE
platform architecture, as defined above, from the
view of an NT COE based platform. The
Infrastructure Services, Common Support
Applications, and mission-application segments
may reside on one platform or may be distributed
on separate servers and workstations.

MSMQ in the DII COE
All versions of Windows NT 4.0 and NT Option
Pack are presently segmented into the DII COE.
All Service Packs up to Service Pack 3 are
segmented and Service Pack 4 is expected to be
segmented into DII COE Version 4.1, due
October 1999. Once Windows 2000 ships, it is
expected to be segmented into the DII COE as
soon as possible. There is no need to segment
MSMQ, since it is an integral part of the Windows
NT products.

The main difference between the Infrastructure
Services and the Common Support Applications of
the DII COE is that the Infrastructure Services
deal with data and that the Common Support

Applications deal with information. For the
purposes of this discussion, data is the raw unit
that the DII COE uses and information is data that
has been formatted so that it is useful and
intelligible for human consumption.
As the discussion of MSMQ capabilities and
architecture shows, MSMQ is intended to present
data to applications. This data may be generated
by applications or it may be stored in a data store
of a database. MSMQ is not intended to present
data for human consumption, and by the above
definition, does not present information.

MSMQ supports the Infrastructure Services of the
DII COE Architecture. It supports different
services based upon how it is programmed and the
application it’s used for. MSMQ can support the
Web Services and Distributed Computing services
through its COM and DCOM programming
interfaces. It can also support Distributed
Computing Services through its C++ programming
interface. It can use the Transport Layer of the
OSI model to provide communications, thereby
supporting the Communications Services, but it is
difficult to do and not recommended.

MSMQ messages can be formatted to be
intelligible to disparate data stores and data
engines. Some of the data included in a message
can be control commands for data engines. By
permitting this level of access and interpretation,
MSMQ provides an interface to the SHADE
Global Data Management and Data Management
Services.

MSMQ uses the security features of Windows NT
to provide system security. Security can be
provided for individual messages by using
certificate based encryption and authentication.
These features are supported by the Security
Management Services of the Kernel. MSMQ is a
user of these services and not a provider.

Conclusion
This discussion intended to used as an introduction
to MSMQ and its use in the DII COE. More
detailed discussions of programming interfaces,
design considerations, installation and
configuration, and security will be presented in
other papers of this series. Several references
provide the detailed information required to
develop MSMQ applications.

MSMQ in the DII COE Part I Page 7

Professional MTS and MSMQ with VB and ASP
discusses Microsoft Transaction Server and
Microsoft Message Queue and their programming
interfaces. It can easily be use as a Programmer’s
Reference Guide to COM, DCOM and C++

objects used in programming MTS and MSMQ.

The Microsoft Developer Network (MSDN) Library is a
quarterly set of CD’s that contain a host of
detailed technical information about Microsoft
products. It has been used extensively for
preparation of this paper and others in the series.

Bibliography

INFO: MSMQ Is Not an E-mail Product Competing
w/Exchange Server, Microsoft Developer Network
(MSDN) Library, April 1999.

Chappell, David Microsoft Message Queue Is a Fast,
Efficient Choice for Your Distributed Application,
Microsoft Developer Network (MSDN) Library,
April 1999.

Defense Information Systems Agency (DISA)
Joint Interoperability and Engineering
Organization (JIEO) Defense Information
Infrastructure (DII) Common Operating
Environment (COE) Integration and Runtime
Specification (I&RTS) DRAFT Version 4.0,
DISA JIEO, April 1999.

Homer, Alex and Sussman, David Professional
MTS and MSMQ with VB and ASP Wrox Press
Ltd, 1998.

This paper was written by Bob (Fridge) Frees of J. G.
Van Dyke and Associates, Inc. (A subsidiary of Wang
Federal) under contract to the Program Manager, Global
Combat Support System – Army.

Microsoft is a registered trademark of Microsoft,
Inc. Microsoft Message Queue, MSMQ,
Windows NT, Windows 2000 Professional,
Windows 2000 Server, Windows 2000 Advanced
Server, Windows NT 4.0, Enterprise Edition,
Windows NT Option Pack, Component Object
Model, COM, Distributed Component Object
Model, DCOM, and Distributed interNet
Applications are copyright Microsoft, Inc.

